AP CALCULUS BC Unit 2 Outline – Differentiation and Fundamental Properties

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/22	AVERAGE RATES OF CHANGE	IN-CLASS SAMPLE PROBLEMSEx. 1 On Mars, the equation for free fall at the surface is $s = 1.86t^2$ m with t in seconds.Assume a rock is dropped from the top of a 200-m cliff. What is the average speed of the rock from $t = 1$ to $t = 2$?Ex. 2 Given $f(x) = 2\sin x + e^x$. Find the average rate of change on the interval $[-1,4]$.Ex. 3 A bird drops a pebble from 2000 feet.a) If the rock falls according to the law $y = 16t^2$, what is its average speed over the first 3 seconds?b) What is the average speed of the rock form $t = 4$ seconds to $t = 4.1$ seconds?d) What is the average speed of the rock form $t = 4$ seconds to $t = 4.01$ seconds?
Номеwo	DRK	Worksheet 7

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/23	THE DERIVATIVE AND	The Derivative at a Point: $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
	DIFFERENTIABILITY	Alternate Form: $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
		Ex. 1 Find $\frac{dy}{dx}$ for $y=3x^2+2x$ at $a=-1$.
		Ex. 2 Use the alternate form to find $f'(x)$ for $f(x) = x^3 - x$ at $a = -1$
		Ex. 3 Determine if $f(x) = \begin{cases} 3x^2 - 2x, & x \le 1 \\ 4x - 3, & x > 1 \end{cases}$ is differentiable at $x = 1$.
		Ex. 4 Given the graph of $f(x)$, use left and right hand derivatives to prove that
		f(x) is not differentiable at $x=4$.
		$f(x) = \begin{cases} -2x+8 & \text{if } x \le 4 \\ -2x+8 & \text{if } x \le 4 \\ -2x+2 & \text{if } x > 4 \\ -2x-2 & i$
HOMEW	ORK	Worksheet 8

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/26	Rules for Derivatives - Power Rule - Product Rule - Quotient Rule	Ex. 1 $\frac{d}{dx}(5)$ Ex. 2 Find $\frac{dy}{dx}$ for $y = x^5$ Ex. 3 Find y' for $y = \frac{1}{\sqrt{x}}$ Ex. 4 For $y = x^2 + x - \sqrt[3]{x} + 5$, find y'. Ex. 5 Find $f'(x)$ for $f(x) = (x^2 - 2x + 1)(3x + 1)$ Ex. 6 Find y' for $y = \frac{x^4 - x + 4}{3x^2 - 2}$
HOMEW	ORK	Worksheet 9

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/27	HIGHER ORDER DERIVATIVES	Ex. 1 For $y = x^4 - 2x^{-3} + x^2$, find $\frac{d^2 y}{dx^2}$ Ex. 2 Find $\frac{d^4 (x^7 - 4x^5)}{dx^4}$
	TANGENT AND Normal Lines	Ex. 3 Find an equation for the line tangent to the curve $f(x) = x^3 + 2x^2 - 4x + 1$ at the point $(1, 6)$.
		Ex. 4 Determine the <i>x</i> -coordinates at which the graph of $y = x^3 - 2x^2 + x + 1$ has horizontal tangent lines.
Homework		Worksheet 10

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/28	DERIVATIVES OF TRIGONOMETRIC	Find $\frac{dy}{dx}$.
	FUNCTIONS	Ex. 1 a) $y = \sin 6x$ b) $y = \sin (x^2 + 2x - 1)$ c) $y = \sin (\cos \sqrt{x})$
		Ex. 2 a) $y = \frac{\cos x}{x^2}$ b) $y = \sin 4x \cos 4x$ c) $y = \frac{3x}{\cos x}$
		Ex. 3 a) $y = x^5 + \sqrt{x} - \tan 5x$ b) $y = \frac{\tan x}{x}$ c) $y = \csc(x^2)$
HOMEWORK		Worksheet 11

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/29	QUIZ	Quiz – Avg. ROC, Differentiability, Rules for Derivatives, Tangents and Normals
Homework		None

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
8/30	THE PACKAGE RULE	Ex. 1 Differentiate $y = (3x^2 + 1)^2$
		Ex. 2 Find the derivative of $f(x) = (x^3 - 4x)^{\overline{4}}$
		Ex. 3 Find $\frac{dy}{dx}$ for $y = \cos^4(3x^2 - 2x)$.
		Ex. 4 Find the equation of the tangent line to the graph of $f(x) = \frac{x}{(x^2 - 4)^2}$ at $x = 3$.
HOMEWORK		Worksheet 12

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/3	REVIEW	None
HOMEWORK		Worksheet 13

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
		FRQ – Limits and Continuity, Differentiation
9/4	UNIT 2 FRQ	
Номе	ORK	Worksheet 14

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
9/5	Unit Exam	Good luck on today's exam
Homework		None